

Journal of Organometallic Chemistry 580 (1999) 161-168

Journal ofOrgano metallic Chemistry

Half-sandwich dichloro, alkyl chloro, dialkyl, alkyl methyl and amido methyl imido cyclopentadienyl niobium and tantalum(V) complexes. Dynamic behaviour of amido imido tantalum derivatives

Aurora Castro, Mikhail V. Galakhov, Manuel Gómez*, Fernando Sánchez

Departamento de Química Inorgánica, Universidad de Alcalá de Henares, Campus Universitario, E-28871 Alcalá de Henares, Spain

Received 2 September 1998

Abstract

Reactions of NbCp'Cl₄ (Cp' = n^5 -C₅H₄SiMe₃) and TaCp*Cl₂Me₂ (Cp* = n^5 -C₅Me₅) with two equivalents of NHR¹SiMe₃ and two equivalents of CNR¹ (M = Nb, R¹ = 2,6-Me₂C₆H₃; 2,6-/Pr₂C₆H₃; SiMe₃; M = Ta, R¹ = 2,6-Me₂C₆H₃, respectively, gave the dichloro imido derivatives [MCpCl₂(NR¹)] (M = Nb, Cp = Cp', R¹ = 2,6-Me₂C₆H₃, **1**; 2,6-'Pr₂C₆H₃, **2**; SiMe₃, **3**; M = Ta, Cp = Cp*, **4**). Alkyl chloro imido complexes [MCpClR(NR¹)], (R¹ = 2,6-Me₂C₆H₃; M = Nb, Cp = Cp', R = Me, **5**; Cp*, **6**; M = Ta, Cp = Cp*, R = Me, **7**; NMe₂, **8**; O'Bu, **9**) were obtained by treatment of dichloro derivatives **1** and **4** with the appropriate amount of alkylating reagent (**5**, **7** one equivalent of ZnMe₂; **6** four equivalents of LiCp*; **8**, **9** one equivalent of LiR). When the same reaction was carried out with two equivalents of MgClMe (**10**) or LiR(R=CH₂SiMe₃, **11**; CH₂CMe₃, **12**; NMe₂, **13**) and one equivalent of Mg(CH₂C₆H₃)₂(THF)₂ (**14**) or Li₂[*o*-(NSiMe₃)₂C₆H₄] (**15**) the corresponding dialkyl imido derivatives [MCpR₂(NR¹)], (R¹ = 2,6-Me₂C₆H₃; M = Nb, Cp = Cp', R = Me, **10**; CH₂SiMe₃, **11**; CH₂CMe₃, **12**; NMe₂, **13**; CH₂C₆H₅, **14**; M = Ta, Cp=Cp*, R = *o*-(NSiMe₃)₂C₆H₄, **15**) can be prepared. The methyl complexes **5**, **7** reacted with one equivalent of LiR to give mixed alkyl methyl and amido methyl imido derivatives [MCpMeR(NR¹)] (R¹ = 2,6-Me₂C₆H₃; M = Nb, Cp = Cp', R = CH₂SiMe₃, **16**; NMe₂, **17**; M = Ta, Cp = Cp*, R = NMe₂, **18**; N'Pr₂, **19**; NH'Bu, **20**). All the new complexes were characterized by usual IR and NMR spectroscopic methods. The rotation of 2,6-Me₂C₆H₃ ring and NR₂(R = Me, 'Pr) amido ligands around C_{ipso}(aryl)-N_{imido} and N_{amido}-Ta bonds, respectively, were observed for complexes **8**, **18** and **19** and studied by ¹H-DNMR spectroscopy. © 1999 Elsevier Science S.A. All rights reserved.

Keywords: Niobium; Tantalum; Alkyl amido imido cyclopentadienyl complexes

1. Introduction

Complexes containing metal-ligand multiple bonds constitute extremely interesting subjects of research in organometallic chemistry, since they are implicated as effective reagents or catalysts for oxidations, metathesis reactions and ammoxidations [1]. In particular, transition metal-imido complexes have been studied as molecular precursors to thin films [2], models of hydrodenitrogenation [3] and probes of electronic structure via their luminescent properties [4]. Although the imide ligand has been employed as an ancillary group to support high-oxidation state metal centres, an increasing number of complexes having reactive imide ligands have been shown to participate in C-H bond activation [5] and cycloaddition reactions [6]. It is noteworthy that early transition metal-imido complexes are widely represented and a great number of established imido functional groups of d⁰ niobium and tantalum has been reported during the last few years [7].

We previously reported a first study of the behaviour of pentamethylcyclopentadienyl arylimido tantalum complexes [TaCp*XY{N(2,6-Me₂C₆H₃)}] (X = Y = Cl; X = Cl, Y = Me) towards alkylating reagents [8] and in

^{*} Corresponding author. Tel.: + 34-1-885-47-64; fax: + 34-1-885-46-83.

E-mail address: mgomez@inorg.alcala.es (M. Gómez)

this article we report our efforts to complete the study, and also the results obtained with similar half-sandwich arylimido niobium complexes.

2. Results and discussion

The starting point for these studies are the pseudo-tetrahedral dichloro imido complexes [NbCp'Cl₂(NR¹)], $(\mathbf{R}^1 = 2, 6 - Me_2C_6H_3, \mathbf{1}; 2, 6 - Pr_2C_6H_3, \mathbf{2}; SiMe_3, \mathbf{3})$ whose syntheses can be easily carried out when dichloromethane solutions of NbCp'Cl₄, (Cp' = η^{5} - $C_5H_4SiMe_3$) are treated at room temperature (r.t.) with aryl trimethylsilyl amine NHR¹SiMe₃ ($R^1 = 2,6$ - $Me_2C_6H_3$; 2,6-^{*i*}Pr₂C₆H₃; SiMe₃) in a 1:2 molar ratio, as shown in Scheme 1. Complex 4 was prepared as described previously [9].

Reactions of 1 or 4 with the stoichiometric amounts of the alkylating reagent gave solutions from which the alkyl chloro imido [MCpClR {N(2,6-Me₂C₆H₃)}], (M = Nb, Cp = Cp', R = Me, 5; Cp*, 6; M = Ta, Cp = Cp*, R = Me, 7; NMe₂, 8; O'Bu, 9) and dialkyl imido [MCpR₂{N(2,6-Me₂C₆H₃)}] (M = Nb, Cp = Cp', R = Me, 10; CH₂SiMe₃, 11; CH₂CMe₃, 12; NMe₂, 13; CH₂C₆H₅, 14; M = Ta, Cp = Cp*, R = *o*-(NSi-Me₃)₂C₆H₄, 15) were isolated in good yields (see Scheme 2).

Furthermore, the reaction between chloro methyl imido complexes **5** or **7** and LiR at r.t in *n*-hexane gives the mixed alkyl methyl and amido methyl imido complexes [MCpMeR{N(2,6-Me₂C₆H₃)}] (M = Nb, Cp = Cp', R = CH₂SiMe₃, 16; NMe₂, 17; M = Ta, Cp = Cp*, R = NMe₂, 18; N'Pr₂, 19; NH'Bu, 20), as shown in Scheme 3.

Treatment of the starting dichloro imido niobium and tantalum complexes with one equivalent of $ZnMe_2$ gave the chloro methyl derivatives 5 and 7, as the only products, but unidentified mixtures were obtained by

Scheme 2. Synthesis of alkyl chloro and dialkyl imido complexes. Reagents and conditions: i–5, 7 one equivalent of $ZnMe_2$, *n*-hexane, 12 h, r.t.; 6, four equivalents of LiCp*: 8 and 9, one equivalent of LiR, toluene, 12 h, r.t. ii–10, two equivalents of MgClMe; 11–13, two equivalents of LiR; 14, one equivalent of Mg(CH₂C₆H₅)₂(THF)₂; 15, one equivalent of Li₂[o-(NSiMe₃)₂C₆H₄], toluene, 12 h, r.t.

using 0.5 equivalents of dimethyl zinc. Several attempts to prepare the pentamethylcyclopentadienyl niobium derivative **6** using a stoichiometric amount of LiCp* were unsuccessful, but the compound was obtained employed a large excess of lithium reagent. On the other hand $[NbCp'(NMe_2)_2\{N(2,6-Me_2C_6H_3)\}]$, **13**, can be easily prepared via the treatment of **1** with LiNMe₂ in a molar ratio 1:2, however, a related reaction of $[TaCp*Cl_2\{N(2,6-Me_2C_6H_3)\}]$, **4**, with this reagent afforded a mixture of the mono dimethylamido derivative **8** and an excess of the alkylating reagent.

All of the complexes 1-20 are soluble in most organic solvents including saturated hydrocarbons. They are extremely air- and moisture-sensitive, and rigorously dried solvents and handling under dry inert atmosphere were found to be imperative for successful preparations.

Scheme 3. Synthesis of alkyl methyl and amido methyl imido complexes.

Table 1 IR^a data of the new complexes

	$v_{\mathbf{M}=\mathbf{N}}$	$v_{\delta s(Me_3Si)}$	$v_{\mathrm{C-C}(\mathrm{Cp}^*)}$	$\nu_{\rm C-H(Cp')}$	v_{M-C}	v_{M-Cl}	Others
1	1300(vs)	1254(vs)		840(vs)		368(s)	1400(m), 1170(m), 1092(w), 1042(s), 902(m), 690(w), 632(m)
2	1329(m)	1252(vs)		841(vs)		379(s)	1170(m), 1048(s), 903(m), 690(w), 633(m)
3	1311(vs)	1249(vs)		840(vs)		387(m)	1170(m), 1103(w), 1049(s), 903(m), 697(w), 631(m)
5	1304(vs)	1252(vs)		836(vs)	634(m)	364(m)	1410(m), 1172(m), 1092(w), 1042(s), 902(m), 690(w), 480(m)
6	1299(vs)	1247(vs)	1020(m)	835(vs)	629(m)	342(m)	1405(m), 1096(w), 1040(s), 907(m)
8	1322(vs)		1027(m)			351(s)	1621(m), 1586(m), 1249(s), 1141(m), 1095(m), 962(vs), 798(vs), 763(m),
							577(m), 395(m)
9	1331(vs)		1025(m)			342(s)	1589(w), 1234(m), 1177(s), 1096(m), 985(vs), 789(vs), 391(m)
10	1308(vs)	1252(vs)		834(vs)	632(m)		1420(m), 1174(m), 1096(w), 1040(s), 910(m), 690(w), 494(m),
11	1306(vs)	1248(vs)		839(vs)			1174(m), 1044(s), 700(m)
12	1301(vs)	1250(vs)		837(vs)	633(m)		1411(m), 1175(m), 1097(w), 1045(s), 906(w), 697(w)
13	1291(vs)	1245(vs)		837(vs)			1410(m), 1176(m), 1096(w), 1045(s), 906(m), 680(w), 632(m), 545(s)
14	1288(vs)	1245(vs)		833(vs)	632(m)		1177(m), 1094(w), 1032(s), 900(m), 692(w), 494(s)
15	1320(s)	1247(s)	1027(m)				1588(w), 1098(m), 941(s), 905(s), 839(vs), 790(m), 749(m), 723(m),
							684(w), 500(w), 344(m), 288(w)
16	1306(vs)	1248(vs)		838(vs)	633(m)		1411(m), 1174(m), 1096(w), 1043(s), 903(m), 705(w), 485(m)
17	1307(vs)	1248(vs)		838(vs)			1413(m), 1173(m), 1096(w), 1043(s), 903(m), 705(w), 485(m)
18	1330(vs)		1026(m)				1634(w), 1589(m), 1159(m), 1141(m), 1095(m), 983(m), 964(m), 758(s),
							489(m), 392(m), 349(s)
19	1323(vs)		1025(m)				1589(w), 1158(s), 1101(s), 982(m), 937(m), 818(m), 760(s), 723(m),
							486(w), 344(m)
20	1331(vs)		1025(m)				3299(m), 1892(w), 1756(w), 1681(m), 1588(s), 1209(vs), 1094(s), 979(s), 942(m), 759(vs), 605(m), 575(m), 491 (m), 349(s), 272(m)

^a Nujol mull, v in cm⁻¹.

The IR spectra (see Table 1) of all complexes show the characteristic absorptions for the pentamethylcyclopentadienyl (v_{C-C} ca. 1025 cm⁻¹) [10], trimethylsilylcyclopentadienyl (v_{C-H} ca. 837 cm⁻¹) [11] rings and for the trimethylsilyl substituent ($v_{\delta s}$ CH₃ ca. 1249 cm⁻¹) [11d, 12]. Absorptions due to the M=N, M–C and M–Cl stretching vibrations are observed at ca. 1304(Nb), 1326(Ta) [7i,m], 633(Nb), 517(Ta) [13] and 368(Nb), 346(Ta) [11d, 14] cm⁻¹, respectively.

At r.t. the chiral complexes 6 and 19 show the expected spectral ¹H-NMR (see Table 2) behaviour with both inequivalent *o*-methyl(phenyl) groups, however, for the analogous complexes 5, 8, 9, 16–18 and 20, such groups are equivalent. This difference is probably due to different rates of Berry pseudorotation processes [15] as we have observed for similar tantalum complexes [8]. The absence of local symmetry in the trimethylsilylcyclopentadienyl ring of the complexes 5, 6, 16 and 17 is consistent with the chiral character of the niobium atom.

The ¹H-NMR spectra of the complexes **11**, **12** and **14** show an AB and AA'BB' spin system for the α -CH₂ groups and the trimethylsilylcyclopentadienyl ring, respectively, in accordance with the prochiral character of the metal center. Furthermore, complex **15** shows an AA'BB' spin system for the phenyl ring protons. All the data are consistent with a C_s symmetry for complexes **10–15** and with a metal center in a characteristic three-legged piano-stool environment.

2.1. Dynamic behaviour in solution of the amido imido complexes 8, 18 and 19

At r.t. the ¹H-NMR spectra of the complexes 8, 13 and 18 show very broad signals for the resonances corresponding to the dimethylamido ligand. The ¹H-NMR spectrum of complex 19 also shows one broad resonance at δ 3.4 for two equivalent methyne protons and two broad signals at δ 1.2 and 1.1 for the methyl groups of the isopropylamido ligand, while in its $^{13}C{^{1}H}$ spectrum at the same temperature, the signals of this ligand are not observed. At 233 K the ${}^{13}C{}^{1}H$ spectrum of 19 shows very good resolved signals for Me–Ta at δ 24.08, for the Cp* ring at δ 114.4 and 11.03, for the methyl substituents of $2,6-Me_2C_6H_3$ ring at δ 19.72 and 18.97, for the aromatic carbons of the $C_6H_3Me_2$ ring at δ 153.6(C_{ipso}), 136.2, 131.7(C_2 , C_6), 127.05, 126.8(C₃, C₅) and 120.1(C₄), and also two signals at δ 52.1 and 48.6 for the inequivalent secondary carbon of the CHMe₂ group and four resonances at δ 30.0, 27.8, 26.8 and 20.9 for the inequivalent and diasterotopic methyl carbons of the CHMe₂ group in the bis-isopropylamido ligand. At 233 K the ¹H-NMR spectrum of this complex displays, besides other signals, two septuplets at δ 3.51 and 3.26 for the isopropylic proton and four doublets at δ 1.24, 1.21, 1.14 and 0.95, respectively, for the methyl groups of the bis-isopropylamido ligand. All these data are consistent with the absence of any symmetry into 19 at low temperatures

	¹ H	$^{13}C{^1H}$
1	^a 6.80 (t, 1H, ${}^{3}J_{H-H} = 7.2$ Hz), 6.65 (d, 2H, ${}^{3}J_{H-H} = 7.2$ Hz, $H_{3}C_{6}Me_{2}N$), 6.24 (m, 2H), 5.90 (m, 2H, $H_{4}C_{5}SiMe_{3}$), 2.40 (s, 6H, $Me_{2}C_{6}H_{3}N$), 0.19 (s, 9H, $Me_{3}SiC_{5}H_{4}$)	^a 153.54 (C _{<i>i</i>} , $C_6H_3Me_2N$), 134.99 (C _{<i>o</i>} , $C_6H_3Me_2N$), 126.7 (C _{<i>p</i>} , $C_6H_3Me_2N$), 125.94 (C _{<i>m</i>} , $C_6H_3Me_2N$), 125.77 (C _{<i>i</i>} , $C_5H_4SiMe_3$), 122.95 (C _{2.5} , $C_5H_4SiMe_3$), 113.07 (C _{3.4} , $C_5H_4SiMe_3$), 19.22 (Ma C H N) = 0.76 (Ma SiC H)
2	^a 7.01 (d, 2H, ${}^{3}J_{H-H} = 7.7$ Hz), 6.89 (t, 1H, ${}^{3}J_{H-H} = 7.7$ Hz, $H_{3}C_{6}^{i}Pr_{2}N$), 6.27 (m, 2H), 6.01 (m, 2H, $H_{4}C_{5}SiMe_{3}$), 3.74 [m, 2H, $(HCMe_{2})_{2}C_{6}H_{3}N$]. 1.28 [d, 2H, ${}^{2}J_{H-H} = 6.6$ Hz, $(Me_{2}CH)_{2}C_{6}H_{3}N$], 0.20 (s, 9H, $Me_{3}SiC_{5}H_{4}$)	$ \begin{array}{l} (Me_{2}-c_{6}H_{3}^{2})r_{2}(N), \ -0.50 \ (Me_{3}3R-s_{14}) \\ a^{1}44.75 \ (C_{i}, \ C_{6}H_{3}^{4}Pr_{2}N), \ 126 \ (C_{i}, \ C_{5}H_{4}SiMe_{3}), \ 125.19 \ (C_{o}, \\ C_{6}H_{3}^{i}Pr_{2}N), \ 122.7 \ (C_{m}, \ C_{6}H_{3}^{i}Pr_{2}N), \ 120.93 \ (C_{p}, \ C_{6}H_{3}^{i}Pr_{2}N), \ 114.3 \\ (C_{2,5}, \ C_{5}H_{4}SiMe_{3}), \ 108.7 \ (C_{3,4}, \ C_{5}H_{4}SiMe_{3}), \ 28.5 \\ [(CHMe_{2})_{2}C_{6}H_{3}N], \ 24.25, \ 24 \ [(HCMe_{2})_{2}C_{6}H_{3}N], \ -0.59 \end{array} $
3	^a 6.34 (m, 2H), 6.10 (m, 2H, <i>H</i> ₄ C ₅ SiMe ₃), 0.21 (s, 9H,	$(Me_3SiC_5H_4)$ a125.6 (C _i , C ₅ H ₄ SiMe ₃), 122 (C _{2,5} , C ₅ H ₄ SiMe ₃), 113.5 (C _{3,4} ,
5	$Me_3SiC_5H_4$), 0.06 (s, 9H, Me_3SiN) *6 90 (d 2H $^3L_{-1} = 7.8$ Hz) 6.76 (t 1H $^3L_{-1} = 7.8$ Hz	$C_5H_4SiMe_3$), 0.37 (<i>Me</i> ₃ SiN), -0.5 (<i>Me</i> ₃ SiC ₅ H ₄) ^a 140 3 135 5 134 4 124 4 121 8 (several phenyl C H Me N)
3	$H_3C_6Me_2N)$, 6.14 (m, 1H), 5.87 (m, 1H), 5.70 (m, 1H), 5.59 (m, 1H, $4_4C_5SiMe_3)$, 2.42 (s, 6H, $Me_2C_6H_3N)$, 1.37 (s, 3H, $Me-Nb)$, 0.16 (s, 9H, $Me_2SiC_4H_4$)	140.3, 150.5, 154.4, 124.4, 121.6 (several pheny, $C_6H_3We_2(V)$, 121.8, 120.2, 114.8, 114.6, 109.4 ($C_{i,2,3,4,5}$, $C_5H_4SiMe_3$), 69.5 (<i>Me</i> -Nb), 19.6 (<i>Me</i> ₂ C_6H_3N), -0 62 (<i>Me</i> ₃ SiC ₅ H ₄)
6	⁵¹⁰ (c, 1H, ${}^{3}J_{H-H} = 7.5$ Hz), 6.88 (d, 1H, ${}^{3}J_{H-H} = 7.5$ Hz), 6.65 (t, 1H, ${}^{3}J_{H-H} = 7.5$ Hz, $H_{3}C_{6}Me_{2}N$), 6.34 (m, 2H), 5.79 (m, 1H), 5.40 (m, 1H, $H_{4}C_{5}SiMe_{3}$), 2.41 (s, 3H), 2.27 (s, 3H, $Me_{2}C_{6}H_{3}N$), 1.67 (s, 15H, $C_{5}Me_{5}$), 0.26 (s, 9H, $Me_{3}SiC_{5}H_{4}$)	^a 156.1 (C_i , $C_6H_3Me_2N$), 140.3 (C_i , $C_5H_4SiMe_3$), 130.1, 127.2, 125.6, 124.9, 122.2 ($C_{2,3,4,5,6}$, $C_6H_3Me_2N$), 121.4, 120.9, 110.6, 107.4 ($C_5H_4SiMe_3$), 120.5 (C_5Me_5), 20.5, 19.2 ($Me_2C_6H_3N$), 12.1 (C_5Me_5), 0.1 ($Me_3SiC_5H_4$)
8	^b 6.93 (d, 2H, ${}^{3}J_{H-H} = 7.3$ Hz), 6.65 (t, 1H, ${}^{3}J_{H-H} = 7.3$ Hz, $H_{3}C_{6}Me_{2}N$), 3.53 (br, 6H, $Me_{2}N$), 2.32 (s, 6H, $Me_{2}C_{6}H_{3}N$), 2.04 (s, 15H, $C_{6}Me_{6}$)	^b 152.5, 130.3, 127, 121.6 (C_i , C_o , C_m , C_p , $C_6H_3Me_2N$), 117.5 (C_5Me_5), 51.8 (br, Me_2N), 19 ($Me_2C_6H_3N$), 11 (C_5Me_5)
9	^a 7.05 (d, 2H, ${}^{3}J_{H-H} = 7.5$ Hz), 6.73 (t, 1H, ${}^{3}J_{H-H} = 7.5$ Hz, $H_{3}C_{6}Me_{2}N$), 2.53 (s, 6H, $Me_{2}C_{6}H_{3}N$), 1.9 (s, 15H, $C_{5}Me_{5}$), 1.27 (s, 9H $Me_{5}C$)	^a 153, 128.3, 127.5, 122 (C_i , C_o , C_m , C_p , $C_6H_3Me_2N$) 119.1 (C_5Me_5), 81 (CMe_3), 31.9 (Me_3C), 19.8 ($Me_2C_6H_3N$), 11.1 (C_5Me_5)
10	^(a)	^a 149.5, 140, 134.6, 123.1 (C_i , C_o , C_p , C_m , $C_6H_3Me_2N$), 117 (C_i , $C_5H_4SiMe_3$), 114.4 ($C_{2,5}$, $C_5H_4SiMe_3$), 111.9 ($C_{3,4}$, $C_5H_4SiMe_3$), 72.1 (Me_2 -Nb) 19.9 ($Me_2C_3H_4N$) 0.52 ($Me_2SiC_3H_4$)
11	^{a7.02} (d, 2H, ${}^{3}J_{H-H} = 7.6 \text{ Hz}$), 6.83 (t, 1H, ${}^{3}J_{H-H} = 7.6 \text{ Hz}$, $H_{3}C_{6}Me_{2}N$), 6.66 (m, 2H), 5.78 (m, 2H, $H_{4}C_{5}SiMe_{3}$), 2.53 (s, 6H, $Me_{2}C_{6}H_{3}N$), 1.54, 0.77 (AB, 2H, ${}^{2}J_{H-H} = 9.36 \text{ Hz}$, $H_{2}CSiMe_{3}$), 0.24 (c, 0H, $Me_{3}SiCH$), 0.00 (c, 0H, $Me_{3}SiCH$)	^a 140.5, 133.5, 128.3, 122.7 (C_{i} , C_{o} , C_{p} , C_{m} , $C_{6}H_{3}Me_{2}N$), 123 (C_{i} , $C_{5}H_{4}SiMe_{3}$), 118.7 ($C_{2.5}$, $C_{5}H_{4}SiMe_{3}$), 105.6 ($C_{3.4}$, $C_{5}H_{4}SiMe_{3}$), 56.5 (br, $CH_{2}SiMe_{3}$), 20.5 ($Me_{2}C_{6}H_{3}N$), 2.85 ($Me_{3}SiCH_{2}$), -0.02 ($Me_{3}SiCH_{2}$), -0.02
12	0.24 (s, 9H, $Ma_3SL_5H_4$), 0.09 (s, 9H, Ma_3SL_1) a6.99 (d, 2H, $^3J_{H-H} = 7.8$ Hz), 6.79 (t, 1H, $^3J_{H-H} = 7.8$ Hz, $H_3C_6Me_2N$), 6.60 (m, 2H), 5.89 (m, 2H, $H_4C_5SiMe_3$), 2.56 (s, 6H, $Me_2C_6H_3N$), 2.17. 0.79 (AB, 2H, $^2J_{H-H} = 6.54$ Hz, H_2CCMe_3), 1.11 (s, 18H, Ma_2CCH), 0.12 (s, 9H, Ma_3SICH)	$(Me_3SiC_5T_4)$ ^a 155, 138, 134.5, 123.25 (C_i , C_o , C_p , C_m , $C_6H_3Me_2N$), 117.9 (C_i , $C_5H_4SiMe_3$), 116.7 ($C_{2.5}$, $C_5H_4SiMe_3$), 109.3 ($C_{3.4}$, $C_5H_4SiMe_3$), 85.5 (br, CH_2CMe_3), 37.4 (Me_3CCH_2), 35.8 (Me_3CCH_2), 20.8 (Me_3CCH_2N) 0.6 (Me_3SiC_4N)
13	^{1.11} (s, 1611, Ma_3CC1_{22}), 0.12 (s, 911, $Ma_3SC_31_4$) ^a 7.00 (d, 2H, $^3J_{H-H} = 7.3$ Hz), 6.78 (t, 1H, $^3J_{H-H} = 7.3$ Hz, $H_3C_6Me_2N$), 6.16 (m, 2H), 6.07 (m, 2H, $H_4C_5SiMe_3$), 3.22 (s, ^{1.21} M N) 2.52 (c, 6H M C H)) 0.14 (c, 9H M SiC H)	$^{(Me_2\sim_6\Pi_3\Pi_3)}$, 0.6 $^{(Me_3SIC_3\Pi_4)}$ a152.4, 140.5, 132.2, 122.4 (C _i , C _o , C _p , C _m , C ₆ H ₃ Me ₂ N), 117.6 (C _i , C ₅ H ₄ SiMe ₃), 115.6 (C _{2.5} , C ₅ H ₄ SiMe ₃), 112.8 (C _{3.4} , C ₅ H ₄ SiMe ₃), 52.9 (Me_3N), 20.2 (Me_5CHN) = 0.02 (Me_5SiCHN)
14	¹² H ₁ , $Me_2(N)$, 2.52 (s, 6H, $Me_2C_6H_3(N)$, 0.14 (s, 9H, $Me_3SIC_5H_4$) ^a 7.03–6.73 (several phenyl, $H_3C_6Me_2N$, $H_5C_6CH_2$), 6 85 (m, 2H), 5.67 (m, 2H, $H_4C_5SiMe_3$), 2.35 (s, 6H, $Me_2C_6H_3N$), 2.17, 1.86 (AB, 2H, ² $J_{H-H} = 8.7$ Hz, $H_2CC_6H_5$), 0.07 (s, 9H, $Me_3SiC_5H_4$)	52.9 (Me_2N), 20.2 ($Me_2C_6H_3N$), -0.02 ($Me_3SIC_5H_4$) a155.4, 140.6, 134.6, 130, 129.1, 128.2, 125.6, 123.1 (several phenyl, $C_6H_3Me_2N$, $C_6H_5CH_2$), 115.6 ($C_{2.5}$, $C_5H_4SiMe_3$), 113.9 (C_i , $C_5H_4SiMe_3$), 112.8 ($C_{3.4}$, $C_5H_4SiMe_3$), 47 ($CH_2C_6H_5$), 20.44 (Me_5C, H_2N) -0.16 (Me_5SiC, H)
15	^a 7.12 (d, 2H, ${}^{3}J_{H-H} = 7.5$ Hz), 6.76 (t, 1H, ${}^{3}J_{H-H} = 7.5$ Hz, $H_{3}C_{6}Me_{2}N$), 7.00 [m, 4H, $H_{4}C_{6}(NSiMe_{3})_{2}$], 2.58 (s, 6H, $M_{4}C = NN$ 1.66 (c, 15H $C = M_{4}$) 0.28 [s, 18H $(M_{4}SiN) = 1$	^(a152-6131) , ^(b15) , ^(a13) , ^(a13) , ^(b15) , ^(a15) , ^{(a15}
16	$J_{H-H} = 10.5 \text{ Hz}, 0.74 \text$	a, 154.8, 140.3, 134.2, 123 (C_i , C_o , C_p , C_m , $C_6H_3Me_2N$), 118.4, 118.7, 112.3, 112.1, 110.4 ($C_{i,2,3,4,5}$, $C_5H_4SiMe_3$), 60.4 (br, CH_2SiMe_3), 36.3 (br, $Me-Nb$), 20.3 ($Me_2C_6H_3N$), 2.33 (Me_3SiCH_2), -0.4 ($Me_3SiC_5H_4$)
17	$\begin{array}{l} Me_{3}SiC_{5}H_{4}, 0.07 \text{ (s, 9H, } Me_{3}SiCH_{2}) \\ a^{2}7.01 \text{ (d, 2H, } ^{3}J_{H-H} = 7.5 \text{ Hz}, 6.77 \text{ (t, 1H, } ^{3}J_{H-H} = 7.5 \text{ Hz}, \\ H_{3}C_{6}Me_{2}N), 6.15 \text{ (m, 1H)}, 6 \text{ (m, 1H)}, 5.9 \text{ (m, 1H)}, 5.74 \text{ (m, 1H)}, \\ H_{4}C_{5}SiMe_{3}), 3.13 \text{ (s, br, 6H, } Me_{2}N), 2.52 \text{ (s, 6H, } Me_{2}C_{6}H_{3}N), \\ 0.75 \text{ (c, 2H, } Ma_{5}Nb), 0.08 \text{ (c, 0H, } Ma_{5}SiCH) \\ \end{array}$	^a 155.3, 140.2,133.6, 122.5 (C _i , C _o , C _p , C _m , C ₆ H ₃ Me ₂ N), 117.1, 117.7, 112.9, 111.8, 110.6 (C _{i,2,3,4,5} , C ₅ H ₄ SiMe ₃), 52.7 (s, Me_2 N), 38.5 (<i>Me</i> -Nb), 19.9 (Me_2 C ₆ H ₃ N), -0.3 (Me_3 SiC ₅ H ₄)
18	0.75 (s, SH, $Me = N0$), 0.08 (s, SH, $Me_3SIC_5H_4$) a7.11 (d, 2H, $^3J_{H-H} = 7.5$ Hz), 6.79 (f, 1H, $^3J_{H-H} = 7.5$ Hz, $H_3C_6Me_2N$), 3.16 (br, 6H, Me_2N), 2.48 (s, 6H, $Me_2C_6H_3N$), 1.76 (s, 15H, C_2Me_2), 0.50 (s, 3H, Me_2T_3)	^a 154.5, 128.3, 127.5, 121 (C_i , C_o , C_m , C_p , $C_6H_3Me_2N$), 114.7 (C_5Me_5), 50.9 (br, Me_2N), 25.7 (Me -Ta), 19.4 ($Me_2C_6H_3N$), 10.7 (C_2Me_2)
19	(s, 1511, C ₅ , 1615), (b, 501), He^{-1a}) ^b 6.97 (d, 1H, ³ J _{H-H} = 7.2 Hz), 6.9 (d, 1H, ³ J _{H-H} = 7.2 Hz), 6.61 (t, 1H, ³ J _{H-H} = 7.2 Hz, $H_3C_6Me_2N$), 3.41 (br, 2H, $HCMe_2$), 2.5 (s, 3H), 2.12 (s, 3H, $Me_2C_6H_3N$), 1.95 (s, 15H, C_5Me_5). 1.18 (br.	^(c) $_{b153.7, 136.1, 131.1, 126.9, 126.8, 120.2 (Cb, C2,3,4,5,6, C6H3Me2N), 114.6 (C5Me5), 50.3 (vbr, CHMe2), 28 (Me-Ta), 24.3 (vbr, Me2CH), 20.6, 19.8 (Me2C6H3N), 11 (CcMe5)$
20	^(c)	^a 154.7, 128.3, 127.6, 120.9 (C_p , C_o , C_m , C_p , C_6 H ₃ Me ₂ N), 114.4 (C_5 Me ₅), 56.34 (C Me ₃ NH), 33.8 (Me_3 CNH), 24.7 (Me -Ta), 19.9 (br, $Me_2C_6H_3$ N), 10.8 (C_5Me_5)

^a Chemical shifts in δ : benzene- d_6 .

Ta)

^b Chemical shifts in δ : chloroform-d.

At 288 K the ¹H-NMR spectrum of **19** allows the detection of the coalescence of the *H* CMe₂ proton isopropylic resonances ($\Delta G^{\neq 288 \text{ K}} = 13.9 \text{ kcal mol}^{-1}$) corresponding to the slow rotation around the Ta-N²Pr₂ bond and due to the multiple character of the mentioned bond.

This result moved us to study the fluxional behaviour of the dimethylamido derivatives 8 and 18, by variable temperature ¹H-NMR spectroscopy. At 193 K the NMR spectra of both complexes showed sharp resonances for the methyl groups of the dimethylamido ligand at δ 3.92, 3.04 (8) and 3.72, 2.82 (18) and also for the o-methyl(phenyl) group of the imido ligand at δ 2.34, 2.08 (8) and 2.45, 2.05 (18). At higher temperatures typical dynamic behaviour involving the exchange of two equally populated signals occur [16] and it is possible to observe the collapse point of the 2,6-Me₂C₆H₃ methyl proton resonances for 8 ($\Delta G^{\# 238 \text{ K}} = 11.7 \text{ kcal mol}^{-1}$) and **18** $(\Delta G^{\# 233 \text{ K}} = 12.0 \text{ kcal mol}^{-1})$ and also of the NMe₂ methyl proton resonances for 8 (A $G^{\# 278 \text{ K}}$ = 14.2 kcal mol⁻¹) and **18** ($\Delta G^{\# 251}$ K = 12.6 kcal mol^{-1}).

The kinetic parameters of this dynamic process (see Tables 3 and 4) which were calculated on the basis of ¹H-DNMR data by NMR line shape analysis and DNMR5 program [16] are in good agreement with an intramolecular process (log A ca. 12.97; 13.75) and takes place without any change of the entropy factor ($\Delta S^{\#}$ ca. 0).

In the ground state, the complexes **8**, **18** and **19** do not present rotation around the Ta-N_{imido} and N_{imido}-C_{ipso}(aryl) bonds, probably due to the positive charge delocalization into the N_{imido}-Ta-N_{amido} moiety (Scheme 4), as has been reported for bis-dimethylamido titanium(IV) derivatives [17]. The $\Delta G^{\#}$ values for the rotation of the 2,6-Me₂C₆H₃ ring around the N_{imido}-C_{ipso}(aryl) bond are similar for **8** and **18** and therefore independent of the substituent X (X = Cl, **8**; Me, **18**). However, in the case of complex **19** with bulkier substituents (Z = ⁱPr) such effect is not observed at higher temperatures or at minor magnetic fields [18]. Therefore, the absence of rotation around the $N_{imido}-C_{ipso}(aryl)$ bond is not due to the positive charge delocalization by π -interaction in the ring but to the steric hindrance of the Z and Cp* groups.

The kinetic parameters for the rotation of the NMe₂ ligand around the N_{amido}-Ta bond clearly depend of the electronic and steric properties of the substituent X = Cl, **8**; Me, **18** and it can be considered as a diamido-amido imido exchange process (Scheme 4), in agreement with the negligible $\Delta S^{\#}$ values.

Further studies will be carried out to probe the similarities and differences in the reactivity of these alkyl imido cyclopentadienyl niobium and tantalum systems with carbon monoxide and isocyanides and the intramolecular rearrangements of the insertion products.

3. Experimental

3.1. General considerations

All reactions and manipulations were carried out under an argon atmosphere using standard Schlenktube and cannula techniques or in a conventional argon-filled glove-box. Solvents were refluxed over an appropriate drying agent and distilled and degassed prior to use: dichloromethane (P_4O_{10}), *n*-hexane (Na/ K alloy) and toluene (Na). Literature methods were employed for the synthesis of starting materials NbCp'Cl₄ [19] and $[TaCp*Cl_2{N(2,6-Me_2C_6H_3)}]$ [9], alkyl lithium LiR ($R = C_5Me_5$ [20], CH₂SiMe₃ [21], CH₂CMe₃ [21], N'Pr₂ [20], NH'Bu [20], O'Bu [20]), Li₂[o-(NSiMe₃)₂C₆H₄] [22] and dibenzyl magnesium $Mg(CH_2C_6H_5)_2(THF)_2$ [23]. The reagents NHR¹SiMe₃ $(R^1 = 2,6-Me_2C_6H_3; 2,6-Pr_2C_6H_3)$ were prepared in the usual way by treatment of amines R¹NH₂ with LiⁿBu followed by SiClMe₃. All commercial products were purchased from Aldrich and were used without further purification as follows: LiNMe₂, MgClMe 3 M in diethyl ether, $ZnMe_2$ 2 M in toluene, R^1NH_2 $(R^1 = 2,6-Me_2C_6H_3; 2,6^{-i}Pr_2C_6H_3)$ and NH(SiMe_3)₂.

Table 3					
Kinetic parameters	of rotation of	f 2,6-Me ₂ C ₆ H ₃	ring around	Nimido-Cip	so(aryl) bond

	Log A	$E_{\rm a}$ (kcal mol ⁻¹)	ΔH^{\neq} (kcal mol ⁻¹)	ΔS^{\neq} (e.u.)	$\Delta G^{\neq 298 \text{ K}}$ (kcal mol ⁻¹)
8	13.55 ± 0.17 r = 0.998	11.8 ± 0.2	11.3 ± 0.2 r = 0.998	1.9 ± 1.0	10.7
18	12.4 ± 0.1 r = 0.999	10.1 ± 0.1	9.6 ± 0.1 r = 0.999	-3.5 ± 10.4	10.6

IR spectra were recorded on a Perkin-Elmer 583 spectrophotometer (4000–200 cm⁻¹) as Nujol mulls between CsI or polyethylene pellets. ¹H and ¹³C{¹H}-NMR spectra were recorded on Varian Unity 300 and Varian Unity 500 Plus spectrometers and chemical shifts were measured relative to residual ¹H and ¹³C resonances in the deuterated solvents C₆D₆ (δ 7.15), CDCl₃ (δ 7.24), C₆D₆ (δ 128) and CDCl₃ (δ 77), respectively. C, H and N analyses were carried out with a Perkin-Elmer 240C microanalyzer.

3.2. Synthesis of $[NbCp'Cl_2(NR^1)]$, $(R^1 = 2, 6-Me_2C_6H_3, 1; 2, 6-Pr_2C_6H_3, 2; SiMe_3, 3)$

A solution of NHR¹SiMe₃ (26.90 mmol; R¹ = 2,6-Me₂C₆H₃, 5.74 ml; 2,6-'Pr₂C₆H₃, 7.14 ml; SiMe₃, 5.62 ml) in dichloromethane (10 ml) was added at r.t. to a red solution of NbCp'Cl₄ (5.00 g, 13.45 mmol) in dichloromethane (150 ml) and the mixture was stirred for 12 h. The supernatant solution was filtered from the [NH₂R¹SiMe₃]Cl residue. The solvent removed in vacuo and the oily red solid residue obtained was heated at 100°C and at reduced pressure during the 4 h to eliminate volatiles. Extraction of the residue into *n*-hexane (2 × 50 ml) afforded a red solution which was filtered, concentrated to ca. 25 ml and cooled to - 40°C to give **1**–**3** as oily red solids.

1: Yield 5.02 g (89%). Anal. Found: C, 45.66; H, 5.52; N, 3.44. $C_{16}H_{22}Cl_2NSiNb$. Calc.: C, 45.73; H, 5.28; N, 3.33%.

2: Yield 5.69 g (89%). Anal. Found: C, 50.15; H, 6.33; N, 2.95. $C_{20}H_{30}Cl_2NSiNb$. Calc.: C, 50.24; H, 6.35; N, 2.94%.

3: Yield 4.64 g (89%). Repeated attempts to obtain satisfactory microanalysis on this material were unsuccessful.

3.3. Synthesis of $[MCpClR \{N(2,6-Me_2C_6H_3)\}],$ $(M = Nb, Cp = Cp', R = Me, 5; Cp^*, 6; M = Ta, Cp = Cp^*, R = NMe_2, 8; O'Bu, 9)$

A 2 M solution of ZnMe₂ in toluene (0.60 ml, 1.19 mmol) was added at r.t. to a red solution of NbCp'Cl₂(NR¹) (0.50 g, 1.19 mmol) in *n*-hexane (50 ml) and the mixture was stirred for 12 h. The solution was filtered and the solvent reduced to dryness to give a brown residue which was extracted with *n*-hexane (2 × 20 ml). Subsequently, the solution was concentrated to ca. 5 ml and cooled to -40° C overnight to afford **5** as an extremely air-sensitive brown microcrystalline solid.

5: Yield 0.38 g (80%). Satisfactory elemental analysis could not be obtained for this compound due to its extreme air and moisture sensitivity.

3.3.1. Synthesis of 6, 8 and 9

LiR (R = Cp*, 8 mmol, 1.13 g; 2 mmol, R = NMe₂, 0.10 g; O'Bu, 0.19 g) was added under rigorously anhydrous conditions to a solution of $MCpCl_2(NR^1)$ (2

Table 4			
Kinetic parameters of rotation of	$T NZ_2 (Z = Me, 8, 18; Pr, 18)$	19) ligand around the	N _{amido} -Ta bond

	Log A	$E_{\rm a}$ (kcal mol ⁻¹)	ΔH^{\neq} (kcal mol ⁻¹)	ΔS^{\neq} (e.u.)	$\Delta G^{\neq 298 \text{ K}}$ (kcal mol ⁻¹)
8	14.1 ± 0.2 r = 0.998	13.8 ± 0.25	13.3 ± 0.25 r = 0.998	4.4 ± 1.0	12
18	13.4 ± 0.25 r = 0.998	11.7 ± 0.25	11.2 ± 0.25 r = 0.998	1.4 ± 1.0	10.8
19	_	-	-	-	13.9 ^a

^a Value determinated at 288 K in the collapse point of *H*CMe₂ signals.

mmol; M = Nb, 0.84 g; Ta, 1.00 g) in toluene (50 ml) and the reaction mixture was stirred for 48 (6) or 12 (8 and 9) h. The resulting suspension was filtered, the solvent reduced to dryness and the residue extracted into *n*-hexane (2 × 10 ml). The solution was concentrated to half volume and cooling to $-40^{\circ}C$ afforded 6, 8 and 9 as red-brown (6) and brown (8 and 9) microcrystalline solids.

6: Yield 0.41 g (40%). Anal. Found: C, 60.20; H, 7.32; N, 2.67. $C_{26}H_{37}$ ClNSiNb. Calc.: C, 60.07; H, 7.12; N, 2.69%.

8: Yield 0.77 g (75%). Anal. Found: C, 46.74; H, 5.81; N, 5.63. C₂₀H₃₀ClN₂Ta. Calc.: C, 46.66; H, 5.87; N, 5.44%.

9: Yield 0.81 g (75%). Anal. Found: C, 48.52; H, 6.47; N, 2.40. C₂₂H₃₃ClONTa. Calc.: C, 48.58; H, 6.41; N, 2.57%.

3.4. Synthesis of $[MCpR_2{N(2,6-Me_2C_6H_3)}]$ (M = Nb, Cp = Cp', R = Me, **10**; CH_2SiMe_3 , **11**; CH_2CMe_3 , **12**; NMe_2 , **13**; $CH_2C_6H_5$, **14**; M = Ta, $Cp = Cp^*$, R = o- $(NSiMe_3)_2C_6H_4$, **15**)

A 3 M solution of MgClMe in diethyl ether (0.8 ml, 2.38 mmol) or LiR (2.38 mmol; $R = CH_2SiMe_3$, 0.22 g; CH₂CMe₃, 0.19 0.12 g; NMe_2 , **g**) or Mg(CH₂C₆H₅)₂(THF)₂ (0.42 g, 1.19 mmol) or Li₂[o- $(NSiMe_3)_2C_6H_4$] (0.31 g, 1.19 mmol) was added to a toluene (30 ml) solution of $[MCpCl_2{N(2,6-Me_2C_6H_3)}]$ (1.19 mmol; M = Nb, Cp = Cp', 0.50 g; M = Ta, Cp =Cp*, 0.60 g) under rigorously anhydrous conditions and the reaction mixture stirred for 12 h. The resulting suspension was filtered, the solvent evaporated to dryness and the residue extracted into *n*-hexane (2×10) ml). The solution was concentrated to half volume and cooled to -40° C to yield 10–15 as brown (10–14) or vellow (15) microcrystalline solids.

10: Yield 0.36 g (80%). Anal. Found: C, 56.81; H, 7.40; N, 3.51. $C_{18}H_{28}NSiNb$. Calc.: C, 56.98; H, 7.44; N, 3.69%.

11: Yield 0.42 g (80%). Anal. Found: C, 54.76; H, 8.36; N, 2.52. $C_{24}H_{44}NSi3Nb$. Calc.: C, 55.03; H, 8.47; N, 2.67%.

12: Yield 0.46 g (80%). Anal. Found: C, 63.45; H, 8.97; N, 2.67. C₂₆H₄₄NSiNb. Calc.: C, 63.52; H, 9.02; N, 2.85%.

13: Yield 0.40 g (80%). Anal. Found: C, 54.85; H, 7.76; N, 9.50. $C_{20}H_{34}N_3SiNb$. Calc.: C, 54.91; H, 7.83; N, 9.60%.

14: Yield 0.50 g (80%). Anal. Found: C, 67.58; H, 6.87; N, 2.53. C₃₀H₃₆NSiNb. Calc.: C, 67.78; H, 6.82; N, 2.63%.

15: Yield 0.57 g (70%). Anal. Found: C, 52.97; H, 6.67; N, 5.90. $C_{30}H_{46}N_3Si_2Ta$. Calc.: C, 52.54; H, 6.76; N, 6.02%.

3.5. Synthesis of $[MCpMeR\{N(2,6-Me_2C_6H_3)\}]$ $(M = Nb, Cp = Cp', R = CH_2SiMe_3, 16; NMe_2, 17;$ $M = Ta, Cp = Cp^*, R = NMe_2, 18; N^iPr_2, 19; NH^iBu,$ 20)

At r.t., *n*-hexane (50 ml) was added to a mixture of the compound [MCpClMe{N(2,6-Me₂C₆H₃)}] (1.25 mmol; M = Nb, Cp = Cp', 0.50 g; M = Ta, Cp = Cp*, 0.61 g) and LiR (1.25 mmol; R = CH₂SiMe₃, 0.12 g; NMe₂, 0.06 g; N'Pr₂, 0.13 g; NH'Bu, 0.10 g). The mixture was stirred for 12 h, during which time a brown solution and a pale gelatinous precipitate of LiCl were formed. Filtration of the supernatant solution from the solid, followed by concentration to ca. 10 ml and cooling to -40° C, afforded 16–18 as brown, 19 yellow and 20 oily brown microcrystalline solids.

16: Yield 0.39 g (70%). Anal. Found: C, 55.72; H, 7.97:N, 3.15. $C_{21}H_{36}NSi_2Nb$. Calc.: C, 55.85; H, 8.03; N, 3.10%.

17: Yield 0.35 g (70%). Anal. Found: C, 55.80; H, 7.55; N, 6.68. $C_{19}H_{31}N_2SiNb$. Calc.: C, 55.87; H, 7.65; N, 6.86%.

18: Yield 0.43 g (70%). Anal. Found: C, 50.80; H, 6.43; N, 5.60. $C_{21}H_{33}N_2Ta$. Calc.: C, 51.00; H, 6.73; N, 5.66%.

19: Yield 0.44 g (65%). Anal. Found: C, 54.47; H, 7.20; N, 4.90. $C_{25}H_{41}N_2Ta$. Calc.: C, 54.54; H, 7.50; N, 5.09%.

20: Yield 0.42 g (65%). Anal. Found: C, 53.29; H, 7.24; N, 5.15. $C_{23}H_{37}N_2Ta$. Calc.: C, 52.87; H, 7.14; N, 5.36%.

Acknowledgements

We are grateful to DGICYT (Project PB-97-0761) and to Universidad de Alcalá (Project E009/98) for financial support of this research.

References

- (a) W.A. Nugent, J.M. Mayer, Metal-Ligand Multiple Bonds, Wiley, New York, 1988.
 (b) D.E. Wigley, Prog. Inorg. Chem. 42 (1994) 239.
- [2] (a) K.C. Jayaratne, G.P.A. Yalp, B.S. Haggerty, A.L. Rheingold, C.H. Winter, Inorg. Chem. 35 (1996) 4910. (b) P.J. Karns, G.P.A. Yalp, A.L. Rheingold, C.H. Winter, Inorg. Chem. 35 (1996) 5968.
- [3] (a) S.D. Gray, K.J. Weller, M.A. Bruck, P.M. Briggs, D.E. Wigley, J. Am. Chem. Soc. 117 (1995) 10678. (b) P.A. Fox, S.D. Gray, M.A. Bruck, D.E. Wigley, Inorg. Chem. 35 (1996) 6027.
- [4] (a) K.S. Heinselman, M.D. Hopkins, J. Am. Chem. Soc. 117 (1995) 12340. (b) D.S. Williams, D.W. Thompson, A.V. Korolov, J. Am. Chem. Soc. 118 (1996) 6526.

- [5] (a) P.J. Walsh, F.J. Hollander, R.G. Bergman, J. Am. Chem. Soc. 110 (1988) 8729. (b) C.C. Cummins, S.M. Baxter, P.T. Wolczanski, J. Am. Chem. Soc. 110 (1988) 8731. (c) D.S. Glueck, J. Wu, F.J. Hollander, R.G. Bergman, J. Am. Chem. Soc. 113 (1991) 2041. (d) C.C. Cummins, C.P. Schaller, G.D. Van Duyne, P.T. Wolczanski, A.W.E. Chan, R. Hoffman, J. Am. Chem. Soc. 113 (1991) 2985. (e) P.J. Walsh, A.M. Baranger, R.G. Bergman, J. Am. Chem. Soc. 114 (1992) 170. (f) T.R. Cundari, J. Am. Chem. Soc. 114 (1992) 10557. (g) J. de With, A.D. Horton, Angew. Chem. Int. Ed. Engl. 32 (1993) 903.
- [6] (a) D.S. Glueck, F.J. Hollander, R.G. Bergman, J. Am. Chem. Soc. 111 (1989) 2719. (b) M.H. Schofield, T.P. Kee, J.T. Anhaus, R.R. Schrock, K.H. Johnson, W.M. Davis, Inorg. Chem. 30 (1991) 3595. (c) R.I. Michelman, R.A. Andersen, R.G. Bergman, J. Am. Chem. Soc. 113 (1991) 5100.
- [7] (a) W.A. Nugent, Inorg. Chem. 22 (1983) 965. (b) D.C. Bradley, M.B. Hursthouse, K.M. Abdul Malik, A.J. Nielson, G.B. Chota-Vuru, J. Chem. Soc. Dalton Trans. (1984) 1069. (c) P.A. Bates, A.J. Nielson, J.M. Waters, Polyhedron 4 (1985) 1391. (d) F. Preuss, H. Becker, H.-J. Häusler, Z. Naturfosch. 425 (1987) 881. (e) Y.-W. Chao, P.A. Wexler, D.E. Wigley, Inorg. Chem. 28 (1989) 3860; Y.-W. Chao, P.A. Wexler, D.E. Wigley, Inorg. Chem. 29 (1990) 4592. (f) W.A. Herrmann, G. Weichselbaumer, R.A. Paciello, R.A. Fischer, E. Herdtweck, J. Okuda, D.W. Marz, Organometallics 9 (1990) 489. (g) J. de With, A.D. Horton, Organometallics 9 (1990) 2207. (h) J. Sundermeyer, Chem. Ber. 124 (1991) 1977. (i) D.C. Bradley, M.B. Hursthouse, A.J. Howes, A.N. de M. Jelfs, J.D. Runnacles, M. Thornton-Pett, J. Chem. Soc. Dalton Trans. (1991) 841. (j) J. Sundermeyer, U. Radius, C. Burschka, Chem. Ber. 125 (1992) 2379. (k) G. Parkin, A. van Asselt, D.J. Leahy, L. Whinnery, N.G. Hua, R.W. Quan, L.M. Henling, W.P. Schaefer, B.D. Santarsiero, J.E. Bercaw, Inorg. Chem. 31 (1992) 82. (1) D.P. Smith, K.D. Allen, M.D. Carducci, D.E. Wigley, Inorg. Chem. 31 (1992) 1319. (m) D.N. Williams, J.P. Mitchell, A.D. Poole, U. Siemeling, W. Clegg, D.C.R. Hockless, P.A. O'Neil, V.C. Gibson, J. Chem. Soc. Dalton Trans. (1992) 739. (n) U. Siemeling, V.C. Gibson, J. Organomet. Chem. 426 (1992) C25. (o) T.C. Baldwin, S.R. Huber, M.A. Bruck, D.E. Wigley, Inorg. Chem. 32 (1993) 5682. (p) D.M. Antonelli, W.P. Schaefer, G. Parkin, J.E. Bercaw, J. Organomet. Chem. 462 (1993) 213. (q) V.C. Gibson, A.D. Poole, U. Siemeling, D.N. Williams, W. Clegg, D.C.R. Hockless, J. Organomet. Chem. 462 (1993) C12. (r) S. Schmidt, J. Sundermeyer, J. Organomet. Chem. 427 (1994) 127. (s) J.-F. Buijink, A. Meetsma, J.H. Teuben, H. Kooijman, A.L. Spek, J. Organomet. Chem. 497 (1995) 161. (t) M.V. Galakhov, M. Gómez, G. Jimenez, P. Royo, M.A. Pellinghelli, A. Tiripicchio, Organometallics 14 (1995) 1901. (u) F.-Q. Liu, A. Herzog, H.W. Roesky, I. Usón, Inorg. Chem. 35 (1996) 741. (v) K. Köhler, H.W. Roesky, A. Herzog, H. Gornitzka, A. Steiner, I. Usón, Inorg. Chem. 35 (1996) 1773. (x) M. Gómez, P. Gómez-Sal, G. Jimenez, A. Martín, P. Royo, J. Sánchez-Nieves, Organometallics 15 (1996) 3579.

- [8] A. Castro, M.V. Galakhov, M. Gómez, P. Gómez-Sal, A. Martín, P. Royo, J. Organomet. Chem. 554 (1998) 185.
- [9] M.V. Galakhov, M. Gómez, G. Jimenez, P. Royo, M.A. Pellinghelli, A. Tiripicchio, Organometallics 14 (1995) 2843.
- [10] R.B. King, M.B. Bisnette, J. Organomet. Chem. 8 (1967) 287.
- [11] (a) E.R. Lippincott, R.D. Nelson, Spectrochim. Acta 10 (1958) 307. (b) H.P. Fritz, Adv. Organomet. Chem. 1 (1964) 269. (c) F.A. Cotton, T.J. Marks, J. Am. Chem. Soc. 91 (1969) 7281. (d) A. Castro, M. Gómez, P. Gómez-Sal, A. Manzanero, P. Royo, J. Organomet. Chem. 518 (1996) 37.
- [12] (a) D.F. Ball, P.L. Goggin, D.G. McKean, L.A. Woodward, Spectrochim. Acta 16 (1960) 1358. (b) M. Gómez, G. Jimenez, P. Royo, J.M. Selas, P.R. Raithby, J. Organomet. Chem. 439 (1992) 147. (c) I. de Castro, J. de la Mata, M. Gómez, P. Gómez-Sal, P. Royo, J.M. Selas, Polyhedron 11 (1992) 1023.
- [13] (a) G.W.A. Fowles, D.A. Rice, D. Wilkins, J. Chem. Soc. Dalton Trans. (1972) 2313; G.W.A. Fowles, D.A. Rice, D. Wilkins, J. Chem. Soc. Dalton Trans. (1974) 1080. (b) R.R. Schrock, P. Meakin, J. Am. Chem. Soc. 96 (1974) 5288. (c) C. Santini-Scampucci, J.D. Riess, J. Am. Chem. Soc. Dalton Trans. (1973) 2436.
- [14] (a) K. Nakamoto, in: M. Tsutsui (Ed.), Characterization of Organometallics Compounds, Wiley-Interscience, New York, 1969. (b) R.J.H. Clark, M.A. Coles, J. Chem. Soc. Dalton Trans. (1974) 1462. (c) A. Antiñolo, M. Fajardo, A. Otero, P. Royo, J. Organomet. Chem. 234 (1982) 309; A. Antiñolo, M. Fajardo, A. Otero, P. Royo, J. Organomet. Chem. 246 (1983) 269; A. Antiñolo, M. Fajardo, A. Otero, P. Royo, J. Organomet. Chem. 265 (1984) 35.
- [15] (a) S.J. McLain, C. Wood, R.R. Schrock, J. Am. Chem. Soc. 101 (1979) 4558. (b) J.M. Curtis, C.J. Curtis, J.E. Bercaw, J. Am. Chem. Soc. 105 (1983) 2651. (c) P. Kubàcek, R. Hoffman, Z. Havlas, Organometallics 1 (1982) 180. (d) I. de Castro, M.V. Galakhov, M. Gómez, P. Gómez-Sal, A. Martin, P. Royo, J. Organomet. Chem. 514 (1996) 51.
- [16] (a) S. Abragam, The Principles of Nuclear Magnetism, Claredon, Oxford, 1961. (b) K.M. Jackman, F.A. Coton, DNMR Spectroscopy, Academic Press, New York, 1975.
- [17] M.V. Galakhov, A. Martín, M. Mena, C. Yélamos, J. Organomet. Chem. 496 (1995) 217.
- [18] Gemini-200 spectrometer, 200 MHz.
- [19] A.M. Andreu, F.A. Jalón, A. Otero, P. Royo, A.M. Manotti Lanfredi, A. Tiripicchio, J. Chem. Soc. Dalton Trans. (1987) 953.
- [20] P. Jutzi, R. Sauer, J. Organomet. Chem. 50 (1973) 29.
- [21] C. Tessiers-Youngs, O.T. Beachley Jr., Inorg. Synth. 24 (1986) 95.
- [22] J.M. Boncella, S.-Y.S. Wang, D.D. Vanderlende, R.L. Huff, K.A. Abboud, W.M. Vaughn, J. Organomet. Chem. 530 (1997) 59.
- [23] R.R. Schrock, J. Organomet. Chem. 122 (1976) 209.